Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Eng Au ; 4(2): 204-212, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646518

RESUMEN

A rise in the disinfection of spaces occurred as a result of the COVID-19 pandemic as well as an increase in people wearing facial coverings. Hydrogen peroxide was among the recommended disinfectants for use against the virus. Previous studies have investigated the emissions of hydrogen peroxide associated with the disinfection of spaces and masks; however, those studies did not focus on the emitted byproducts from these processes. Here, we simulate the disinfection of an indoor space with H2O2 while a person wearing a face mask is present in the space by using an environmental chamber with a thermal manikin wearing a face mask over its breathing zone. We injected hydrogen peroxide to disinfect the space and utilized a chemical ionization mass spectrometer (CIMS) to measure the primary disinfectant (H2O2) and a Vocus proton transfer reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS) to measure the byproducts from disinfection, comparing concentrations inside the chamber and behind the mask. Concentrations of the primary disinfectant and the byproducts inside the chamber and behind the mask remained elevated above background levels for 2-4 h after disinfection, indicating the possibility of extended exposure, especially when continuing to wear the mask. Overall, our results point toward the time-dependent impact of masks on concentrations of disinfectants and their byproducts and a need for regular mask change following exposure to high concentrations of chemical compounds.

2.
Environ Sci Technol ; 57(41): 15454-15464, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37783466

RESUMEN

Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Estados Unidos , Humanos , Cloro/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis , Texas , Yacimiento de Petróleo y Gas , Gas Natural
3.
Environ Sci Technol ; 57(16): 6589-6598, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37061949

RESUMEN

Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.


Asunto(s)
COVID-19 , Desinfectantes , Humanos , Ácido Hipocloroso , Cloraminas/química , Respiradores N95 , Pandemias , Desinfectantes/química , Desinfectantes/toxicidad , Desinfección , Cloro/química
4.
Environ Sci Atmos ; 2(1): 85-99, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35178522

RESUMEN

Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is likely derived from a subset of the crystalline mineral phases in the ash. The INA of other mineral-based dusts can change when exposed to various gaseous and aqueous chemical species, many of which also interact with volcanic ash in the eruption plume and atmosphere. However, the effects of aqueous chemical aging on the INA of volcanic ash have not been explored. We show that the INA of two mineralogically distinct ash samples from Fuego and Astroni volcanoes is variably reduced following immersion in water or aqueous sulfuric acid for minutes to days. Aging in water decreases the INA of both ash samples by up to two orders of magnitude, possibly due to a reduction in surface crystallinity and cation availability accompanying leaching. Aging in sulfuric acid leads to minimal loss of INA for Fuego ash, which is proposed to reflect a quasi-equilibrium between leaching that removes ice-active sites and dissolution that reveals or creates new sites on the pyroxene phases present. Conversely, exposure to sulfuric acid reduces the INA of Astroni ash by one to two orders of magnitude, potentially through selective dissolution of ice-active sites associated with surface microtextures on some K-feldspar phases. Analysis of dissolved element concentrations in the aged ash leachates shows supersaturation of certain mineral species which could have precipitated and altered the INA of the ash. These results highlight the key role that leaching, dissolution, and precipitation likely play in the aqueous aging of volcanic ash with respect to its INA. Finally, we discuss the implications for understanding the nature and reactivity of ice-active sites on volcanic ash and its role in influencing cloud properties in the atmosphere.

5.
J Phys Chem A ; 125(33): 7303-7317, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34383508

RESUMEN

Chlorine-initiated oxidation of alkanes has been shown to rapidly form secondary organic aerosol (SOA) at higher yields than OH-alkane reactions. However, the effects of alkane volatile organic compound precursor structure and the reasons for the differences in SOA yield from OH-alkane reactions remain unclear. In this work, we investigated the effects of alkane molecular structure on oxidation by chlorine radical (Cl) and resulting formation of SOA through a series of laboratory chamber experiments, utilizing data from an iodide chemical ionization mass spectrometer and an aerosol chemical speciation monitor. Experiments were conducted with linear, branched, and branched cyclic C10 alkane precursors under different NOx and RH conditions. Observed product fragmentation patterns during the oxidation of branched alkanes demonstrate the abstraction of primary hydrogens by Cl, confirming a key difference between OH- and Cl-initiated oxidation of alkanes and providing a possible explanation for higher SOA production from Cl-initiated oxidation. Low-NOx conditions led to higher SOA production. SOA formed from butylcyclohexane under low NOx conditions contained higher fractions of organic acids and lower volatility molecules that were less prone to oligomerization relative to decane SOA. Branched alkanes produced less SOA, and branched cycloalkanes produced more SOA than linear n-alkanes, consistent with past work on OH-initiated reactions. Overall, our work provides insights into the differences between Cl- and OH-initiated oxidation of alkanes of different structures and the potential significance of Cl as an atmospheric oxidant.

6.
Sci Adv ; 7(9)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33627419

RESUMEN

Ice-nucleating particles (INPs) in biomass-burning aerosol (BBA) that affect cloud glaciation, microphysics, precipitation, and radiative forcing were recently found to be driven by the production of mineral phases. BBA experiences extensive chemical aging as the smoke plume dilutes, and we explored how this alters the ice activity of the smoke using simulated atmospheric aging of authentic BBA in a chamber reactor. Unexpectedly, atmospheric aging enhanced the ice activity for most types of fuels and aging schemes. The removal of organic carbon particle coatings that conceal the mineral-based ice-active sites by evaporation or oxidation then dissolution can increase the ice activity by greater than an order of magnitude. This represents a different framework for the evolution of INPs from biomass burning where BBA becomes more ice active as it dilutes and ages, making a larger contribution to the INP budget, resulting cloud microphysics, and climate forcing than is currently considered.

7.
Proc Natl Acad Sci U S A ; 117(36): 21928-21937, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839314

RESUMEN

Ice nucleation and the resulting cloud glaciation are significant atmospheric processes that affect the evolution of clouds and their properties including radiative forcing and precipitation, yet the sources and properties of atmospheric ice nucleants are poorly constrained. Heterogeneous ice nucleation caused by ice-nucleating particles (INPs) enables cloud glaciation at temperatures above the homogeneous freezing regime that starts near -35 °C. Biomass burning is a significant global source of atmospheric particles and a highly variable and poorly understood source of INPs. The nature of these INPs and how they relate to the fuel composition and its combustion are critical gaps in our understanding of the effects of biomass burning on the environment and climate. Here we show that the combustion process transforms inorganic elements naturally present in the biomass (not soil or dust) to form potentially ice-active minerals in both the bottom ash and emitted aerosol particles. These particles possess ice-nucleation activities high enough to be relevant to mixed-phase clouds and are active over a wide temperature range, nucleating ice at up to -13 °C. Certain inorganic elements can thus serve as indicators to predict the production of ice nucleants from the fuel. Combustion-derived minerals are an important but understudied source of INPs in natural biomass-burning aerosol emissions in addition to lofted primary soil and dust particles. These discoveries and insights should advance the realistic incorporation of biomass-burning INPs into atmospheric cloud and climate models. These mineral components produced in biomass-burning aerosol should also be studied in relation to other atmospheric chemistry processes, such as facilitating multiphase chemical reactions and nutrient availability.


Asunto(s)
Aerosoles/química , Ceniza del Carbón/química , Cubierta de Hielo/química , Minerales/química , Atmósfera/química , Biomasa , Cambio Climático , Congelación , Hielo/análisis , Tamaño de la Partícula , Incendios Forestales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...